MapleSect128No17.mws

Section 12.8 #17

An Example Using Maple

>    with(plots):

Warning, the name changecoords has been redefined

>    f:=-4*x/(x^2+y^2+1);

f := -4*x/(x^2+y^2+1)

>    fx:=diff(f,x);

fx := -4/(x^2+y^2+1)+8*x^2/(x^2+y^2+1)^2

>    simplify(fx);

4*(x^2-y^2-1)/(x^2+y^2+1)^2

>    fy:=diff(f,y);

fy := 8*x/(x^2+y^2+1)^2*y

>    solve({fx=0,fy=0},{x,y});

{y = 0, x = 1}, {y = 0, x = -1}

>    eval(f,{x=-1,y=0});

2

>    eval(f,{x=1,y=0});

-2

The critical ordered pairs are (-1,0) and (1,0) and the corresponding critical points are (-1,0,2) and (1,0,-2).  Since applying the Second Partials Test could be rather cumbersome, it is perhaps easier to graph the surface in order to determine the nature of the critical points.

>    plot3d(f,x=-4..4,y=-4..4,axes=boxed);

[Maple Plot]

Here is a different view.

>    plot3d(f,x=-4..4,y=-4..4,axes=boxed);

[Maple Plot]

We can observe that (-1,0,2) is a relative maximum point and (1,0,-2) is a relative minimum point.

Below we see the Second Partials Test applied using Maple.

>    fxx:=diff(fx,x);

fxx := 24/(x^2+y^2+1)^2*x-32*x^3/(x^2+y^2+1)^3

>    fyy:=diff(fy,y);

fyy := -32*x/(x^2+y^2+1)^3*y^2+8/(x^2+y^2+1)^2*x

>    fxy:=diff(fx,y);

fxy := 8/(x^2+y^2+1)^2*y-32*x^2/(x^2+y^2+1)^3*y

>    d:=fxx*fyy-(fxy)^2;

>   

d := (24/(x^2+y^2+1)^2*x-32*x^3/(x^2+y^2+1)^3)*(-32*x/(x^2+y^2+1)^3*y^2+8/(x^2+y^2+1)^2*x)-(8/(x^2+y^2+1)^2*y-32*x^2/(x^2+y^2+1)^3*y)^2

>    eval(fxx,{x=-1,y=0});

-2

>    eval(d,{x=-1,y=0});

4

We can see analytically that since fxx(-1,0) is negative and d(-1,0) is positive the critical point (-1,0,2) is a relative maximum point based on the Second Partials Test.

>    eval(fxx,{x=1,y=0});

2

>    eval(d,{x=1,y=0});

4

We can see analytically that since fxx(1,0) is positive and d(1,0) is positive the critical point (1,0,-2) is a relative minimum point based on the Second Partials Test.

With the help of Maple the Second Partials Test is not too difficult to apply in this case.