Series Solution Example 12
Some Polynomial Approximations
Truncated series solutions are graphed in red (Order 9 and then Order 10), blue (Order 12), green (Order 14), magenta (Order 24), and black (Order 36).
| > | ode:=diff(y(x),x,x)+x*y(x)=x*sin(x); | 
| > | Order:=9; | 
| > | dsolve({ode,y(0)=0,D(y)(0)=1},y(x),type=series); | 
| > | rhs(%); | 
| > | poly:=convert(%,polynom); | 
| > | with(plots):SeriesSoln:=plot(poly,x=0..8,y=-40..40,color=red): | 
| > | display(SeriesSoln); | 
| > | Order:=10; | 
| > | dsolve({ode,y(0)=0,D(y)(0)=1},y(x),type=series); | 
| > | rhs(%); | 
| > | poly1:=convert(%,polynom); | 
| > | with(plots):SeriesSoln1:=plot(poly1,x=0..5,y=-10..40,color=red): | 
| > | display(SeriesSoln1); | 
| > | Order:=12; | 
| > | dsolve({ode,y(0)=0,D(y)(0)=1},y(x),type=series); | 
| > | rhs(%); | 
| > | poly2:=convert(%,polynom); | 
| > | SeriesSoln2:=plot(poly2,x=0..5,y=-10..40,color=blue): | 
| > | display(SeriesSoln1,SeriesSoln2); | 
| > | Order:=14; | 
| > | dsolve({ode,y(0)=0,D(y)(0)=1},y(x),type=series); | 
| > | rhs(%); | 
| > | poly3:=convert(%,polynom); | 
| > | SeriesSoln3:=plot(poly3,x=0..5,y=-10..40,color=green): | 
| > | display(SeriesSoln1,SeriesSoln2,SeriesSoln3); | 
| > | Order:=24; | 
| > | dsolve({ode,y(0)=0,D(y)(0)=1},y(x),type=series); | 
| > | rhs(%); | 
| > | poly4:=convert(%,polynom); | 
| > | SeriesSoln4:=plot(poly4,x=0..5,y=-10..40,color=magenta): | 
| > | display(SeriesSoln1,SeriesSoln2,SeriesSoln3,SeriesSoln4); | 
| > | Order:=36; | 
| > | dsolve({ode,y(0)=0,D(y)(0)=1},y(x),type=series); | 
| > | rhs(%); | 
| > | poly5:=convert(%,polynom); | 
| > | SeriesSoln5:=plot(poly5,x=0..5,y=-10..40,color=black): | 
| > | display(SeriesSoln1,SeriesSoln2,SeriesSoln3,SeriesSoln4,SeriesSoln5); | 
| > | 
| > |